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ABSTRACT 

Design considerations, drawings, and circuit diagrams for 

a single stage prototype microparticle accelerator a r e  pre- 

sented. Qualification tests are also described which will 

assess the reliability of the system and its components and 

confirm that they operate according to specifications. The 

specifications for the design a r e  generally those outlined 

in the document "Design Requirements; A Design Study 

for Microparticle Accelerator, I '  dated March 31, 1964 

as prepared by Ion Physics Corporation under Contract 

NASZ - 1 87 3 .  
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1.  INTRODUCTION 

Detailed design of components for a single-stage prototype micro- 

Por t  modifications have also particle accelerator has been accomplished. 

been designed to allow the mounting of the prototype system in an existing 

four-foot-diameter stainless steel vacuum vessel closely simulating the 

anticipated containing vessel. 

F o r  purposes of reference, a layout of the entire bushing-generator- 

switch package is given in  Drawing No. S23052. 

the components have been designed to the specifications outlined in the docu- 

ment "Design Requirements, A Design Study for Microparticle Accelerator, " 

dated March31, 1964, as  prepared by Ion Physics Corporation under 

Contract NAS2-1873. These exceptions, involving the bushing and the elec- 

tronics circuitry, a r e  duly noted and have been made either to improve 

performance or  to simplify the design with no sacrifice of performance. 

With but few exceptions, 
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2. ELECTROSTATIC GENERATOR 

The prototype Van  de Graaff type electrostatic generator is detailed 

in the drawings numbered 23004 through 23020, 23023 through 23046, 

23050, 23051, and 23053 through 23057. 

a 3.5-inch wide charging belt driven by a 1.8 hp, 400 cycle, 3-phase elec- 

t r ic  motor, This configuration should be capable of generating over 750 kV 

at over 200 FA current. There i s  thus a generous reserve capacity for  future 

expansion of the accelerator. This capacity is not needed at present, how- 

ever, so the machines to  be assembled will use 2-inch belts and 1 /3  hp, 

6O-cycle, 3-phase motors of approximately the same physical size, 

combination ought to provide over 100 )LA current at over 600 kV, which is 

more than adequate, and will not require the use of a 60-400 cycle con- 

verter.  The generator is essentially a scaled-down version of those mar-  

keted commercially by the High Voltage Engineering Corporation in their 

particle accelerators. These machines have an impressive record for 

durability and reliability and this new design should share in these attri- 

bute s. 

The design as shown incorporates 

This 

The electrical circuit for  the generator is shown in Fig.  1. Volt- 

age control and stabilization is effected in  a time proved manner. The gen- 

erator structure is electrostatically graded by a series connected stack of 

precision resistors (type BFT, Resistance Products Corporation). The 

current in this stack is proportional to terminal voltage and can be used to 

indicate this quantity on an appropriately calibrated microammeter. This 

same current can be used to supply a control signal to the grid of a 6BK4 

high voltage triode which, in turn,  adjusts the potential of the coronapoints 

charging the belt, 

tor becomes self-regulating against voltage variations which might occur 

A feedback loop is thus established by which the genera- 
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Over time lengths longer than a fraction of a second. Shorter duration vari-  

ations a re  adequately filtered by the capacitance of the terminal, etc., to 

ground. This sort  of control and stabilization circuit has provided voltage 

setting accuracy of *l% and regulation to within *2% in similar applications. 

The equipotential planes, o r  decks, in the generator support struc- 

ture, or column, are separated by glass insulators which a r e  fastened by a 

special adhesive. Assembly of the column structure requires a jig to hold 

the pieces in  place while the adhesive is cured. The jig is detailed in  the 

drawing numbered 23049. As outlined in  the Monthly Technical ReportNo. 4, 

three decks with grading resistors, etc. , have been fabricated and joined 

for the purpose of preliminary voltage testing. The tes t  is to check out the 

grading resistor assembly, which is peculiar to the new design, The assem- 

bly jig has necessarily a lso  been fabricated. Views of the jig and the three- 

deck test column are shown in  Fig. 2. Unfortunately, there is  insufficient 

time to perform the actual voltage tests within the contract period. How- 

ever, the aseembly is available so that tests can commence immediately in 

the next phase of the program. 

Other tests to be run on the generator will involve the whole machine 

in a pressure vessel by itself. The voltage, current, and regulation capa- 

bilities will be determined and the xnacthe wil l  be run for an extended 

period to assure durability. It may also be advisable to verify the voltage 

calibration by independent measurements with an electrostatic voltmeter. 
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3 .  HIGH STOLTAGE SWITCH 

The prototype high voltage triggered a rc  switch design is given in  

the drawings numbered 23054-1 through 23054-13. This design is based on 

the most recent Ion Physics Corporation experience with similar switches 

at both the 150 kilovolt and 1 to 2 rnegavolt levels. The total of switch 

delay plus jitter times should be under 100 nanoseconds. 

from the drawings, the damping resistor (type F F W  high frequency carbon 

film resistor, Resistance Products Corporation) forms the suspension for 

the high voltage terminal of the switch. The value of resistance required 

As can be seen 

to critically damp (or somewhat overdamp) the busking discbarge circuit 

will be determined empirically during the prototype test. The resistance 

can be estimated to be in the range 40 to 1000 Q so that values in  this 

range will be tested. 

the 50 kV t r igger  pulse being introduced via the conducting rod up the center. 

Provision has been made for mounting a short length of resistance wire on 

the insulating block of the ground terminal so that it comes between the ter-  

minal and the pressure vessel and is thus in the discharge path. This will 

serve as the pulse monitoring resistor. 

bushing has been provided in the generator base plate SO that the signal can 

be transmitted for remote display. 

For  test purposes, the switch will be se t  up in  a jig and placed within 

The trigger gap is mounted in the ground terminal, 

A n  appropriate pressure-to-cable 

the tank of a conventional 1.3 M Y  Van de Graaff generator in such a way 

that it may be used to discharge the high voltage terminal. In this application, 

the generator will be run a t  500 kV. 

while delay and jitter times a r e  measured by high speed oscilloscope photo- 

graphs. Firing will  be accomplished by the trigger pulse circuit described 

later in this report, so that trigger performance (delay and j i t ter)  will be 

The switch will be fired repeatedly 
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measured s imdtaneously,  The durability and reliability of the switch and 

trigger over a thcusand or more discharge cycles will be verified under 

energy flow conditions closely approximating those of the ultimate application. 

8 



4. HIGH VOLTAGE BUSHING 

The prototype high voltage pressure-to-vacuum bushing design is 

detailed in the drawings numbered 23003-1 through 23003-11. The pres- 

sure tank to contain the gas insulation i s  shown in Drawing No. 23002 and 

the port modifications for  mounting the bushing-generator-switch package 

in an existing four-foot diameter stainless steel vacuum vessel a r e  shown 

in Drawing No. 23001. The isolation grid is detailed in Drawing No. 23047 

and a drif t  tube mockup assembly in  drawings numbered 23048, 

23003-6  and 23003-9. 

demounting of the pressure vessel and the bushing are shown in drawings 

numbered 23021 and 23022 respectively. The pressure vessel stand also 

may be used for generator removal as well, 

23003-5, 

Gastered stands to assist in the mounting and 

All specifications have been met except that the bushing is slightly 

over 26inches in  overall length rather than 23 inches. 

is on the vacuum side and provides a further margin of safety against volt- 

age breakdown along the glass insulating column while still leaving a vac- 

ucm insulation distance between opposing bushing terminations of over 14 

lcches which should be quite adequate. 

was laid down primarily to ensure that the maximum diameter of the accel- 

erator would not exceed 8 f t  9 in., a specification which has not been 

altered by the change in bushing length. 

The extra length 

The original bushing length limit 

The bushing tes t  sequence will begin with d. c. conditions and pro- 

ceed finally to pulsed conditions, employing the generator and switch 

described previously. Under d. c .  conditions, bushings of similar design 

have provided as much as 800 kV, negative polarity, in a 10 tor r  vacuum 

environment. Previous tests have indicated no change in  bushing capability 

from 10 tor r  to 10 torr ,  s o  the capability a t  10 tor r  will be assumed 

-7 

-6  -7 -8 
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I 
the same provided this result is verified. That the bushing wil l  support 

I 5 0 0  kV d, C. , negative polarity, is not in  doubt, The d. c. tests will 
I 
I actually serve only to establish the cleanliness of the bushing and tank and 
, 
I provide a performance base line from which the pulsed measurements may 

proceed, 

The bushing performance under pulsed conditions is unknown and is 

the most important quantity to be established in the bushing test  sequence. 

No serious difficulties a re  anticipated, but two unlikely possibilities must 

be explored. The first is the possibility that flashover o r  sparking in vac- 

uum across the glass segments of the graded insulating column may occur 

during pulsing. This column is resistively graded for d. c. conditions, but 

becomes capacitively graded under pulsed conditions. The capacitive grad- 

ing w i l l  not be uniform, which circumstance may result in voltage overstress 

across some of the glass segments. The second possibility is that a spark 

occurring on a bushing being discharged may, by charged particle or  ultra- 

violet radiation emission, trigger breakdown on the adjacent bushing leading 

to its partial or complete discharge prematurely. 

The question of sparking can be settled by simply viewing the glass 

column during bushing discharge. The test  vessel is equipped with three 

viewing ports, so  this presents no problem. One of these ports is in the 

same side of the vessel as the bushing, in the approxmate position the adja- 

cent bushing would occupy. The induced sparking question can be settledby 

fitting this port with a blank-off, in which is mounted one of several exist- 

ing 200 kV air-to-vacuum bushings. Fastened to the vacuum end of the 

bushing would be one segment of a 500 kV bushing column consisting of a 

metal plate (connected to the bushing conductor), a glass ring, and a metal 

ring connected to ground. An external 160 kV power supply can then be 

used to apply sufficient overvoltage across the glass ring to lead to sparking 

while the adjacent 500 kV bushing is at operating potential. This situation 

10 



presents the most favorable conditions for  induced sparking and, again, 

visual  observation will settle the question, reinforced with observations of 

generator terminal voltage behavior, Should either of the sparking possi- 

bilities prove to be a serious problem, further experiments and possibly 

bushing redesign would be necessary. 

porary use of an existing glass insulating column assembly so that i f  

redesign is necessary, very little will have been lost. 

Present tes t  plans involve the tem- 

The one final quantity to be measured is the capacitance between 

opposite bushings, which is  the largest of the interstage capacitances. 

Since this is due mainly to the drift tubes and bushing terminations, meas- 

urement can be accomplished by attaching a drift tube mockup to the plate 

of the 500 kV bushing section which will have been mounted on the 200 kV 

bushing in  the previous test  and inserting t h i s  assembly in the viewing port 

directly opposite the bushing under test. The measurement c a n  be obtained 

either with a capacitance bridge or by direct observation of the induced volt- 

age pulse during bushing discharge. The importance of the interstage capa- 

citances is that they cause partial discharge of all bushings when any one is 

grounded, as explained in previous reports. If the measured capacitances 

are small enough that voltage sag stays within the *5'% specification, no 

prctblem exists. This is not likely; however, there a re  several simple 

expedients, involving the use of grounded shielding wires, which would 

probably serve to reduce the interstage capacitances to a harmless level. 

Even if  this is not adequate, it will only be necessary to program the voltage 

sequence of the stages s o  as to compensate. 

11 



5. ELECTRONICS 

! 

A block diagram for the electronics circuitry is given in  Fig. 3. 

There a re  three essential changes from the circuit concept of previous 

rep0 rts . 
Firstly, the detector pulse simulator (I?) has been moved back 

behind the detector preamplifier so that it serves to check out all the 

sequencing electronics instead of only the portion at ground potential, The 

obvious advantages of this arrangement require no elaboration. 

- 

Secondly, the amplified detector pulse is transmitted to ground poten- 

tial by means of the coupling transformer (T)  rather than a blocking capaci- 

tor. This transformer is insulated for 5 kV between primary and secondary 

and has a turns ratio of 15:1, 

amplifier (A ) and the delay generator (D), This gain is necessary because 

the detector amplifier output is about 1.5 V while the delay generator 

requires a minimum 15V triggering signal amplitude. The transformer also 

provides much better isolation from pre-acceleration power supply (G 1 
noise so  that there i s  no longer a signal-to-noise ratio problem at thedelay 

generator input. It ha6 thus been possible to eliminate the potential divider 

entirely, since its purpose w a s  reduction of the noise to a level below the 

delay generator triggering threshold. It is apparent that circuit performance 

has not been degraded in any important way by the change to a coupling 

t rans  former. 

providing voltage gain between the detector 

2 

1 

The third change which has been made is that the delay generators 

a r e  now ser ies  connected rather than paralleled. Thus, only the 10-100 

psec range of each generator need be used so that range switching i s  elimi- 

nated, resulting in simplification of the control circuitry. Delay generator 

13 



&- 

- 
c 

1-780 

n 
0 

T 

n 
J 

I 

J 

I t I ? <- 

1 
I 

14 



Key t o  Figure 3 

R2 - 

A1 

A 3  
P 

T 

S 

D 

C 

DVM 

OlO, 0119 etc. - 

focusing lens elements 

drift tubes 

detect0 r capacitance 

bushing plus Van de Graaff generator capaci- 
tance to ground 

voltage divider for obtaining focusing 

damping resistor;  Resistance Products Corp. 
type FFW 

pulse monitoring resistor;  resistance wire 

pre-acceleration voltage supply; Fluke Model 
408-8 

Van de Graaff generator 

preamplifier power supply; Space Technology 
Laboratories Model lPPS lOOD 

detector preamplifier; Space Technology Labo- 
r atorie s particle detector preamplifier 

detector amplifier; 2 Teltronies Ine. model VA 
-20 in series 

switch trigger amplifier; see Fig. 5 

detector pulse simulator; see Fig. 4 

coupling transformer; E. G. and G. TR-36 

triggered arc  switch 

variable delay generator; Rutherford Electronics 
Company model A-2 

delay module control circuit; see Fig. 6 

5 digit digital voltmeter; Hughes Instruments 
model 5100 o r  equivalent 

signal outputs for viewing timing sequence and 
bushing discharge signals on external oscilloscope 

high voltage monitoring outputs O3’ O.4 
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uncertainties are now additive along the accelerator, but the - net effect is a 

reduction because the large uncertainty of the 100-1000 psec scale (*2 psec) 

is avoided. 

tions indicate that, with some small changes in drift tube lengths, the accel- 

erator can tolerate a delay uncertainty at each stage of +O. 30 psec or -0.25 

psec (*O. 25% of full scale with up to 0.05 psec delay generator output pulse 

rise time) in addition to *l% uncertainty in  the delay control signal voltage. 

The delay generator which has been chosen is rated as accurate to*O. 2% of 

f u l l  scale and will provide an output pulse with a r ise  time to triggeringvolt- 

age (15 V )  of l ess  than 0.05 psec. The delay control signal can be accurate 

to a small fraction of 170, B O  that a reasonable safety margin exists on all 

specifications. 

Wand cornpuratlons based on the computer sequencing calcula- 

Most of the components involved in the block diagram are commer- 

cially available, and manufacturers' names and model numbers are pro- 

vided in  the Key to Fig. 3. Among the items not indicated in  Fig. 3 are an 

isolation transformer to provide line power to the components held at pre- 

acceleration voltage, and a line voltage regulating transformer from which 

all the electronic components will be operated. The former is Del Elec- 

troxics Corp, model AD1641 and the latter is Sola Electric Co. Solatron 

model 31-13-250, Circuit diagrams a re  provided for the three components 

which have had to  be designed. 

The pulse simulator circuit is shown in Fig. 4. It can be actuated 

from a station at ground potential by virtue of the isolation transformer, and 

provides a single pulse output of width 10 psec, rise (and fall) time 1 psec, 

and height variable from 0 to 100 pV. These conditions correspond to the 

fastest  pulse which will be generated in practice and thus duplicate the worst 

conditions under which the sequencing circuitry must operate. 

Figure 5 shows the switch trigger amplifier, or  initiator, circuit. It 

converts the 50 V delay generator pulse output into a pulse rising to 50kV in 

less than 1 psec. 

16 
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FIG. 6-DELAY MODULE CONTROL CIRCUIT 
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I 

Figure 6 shows the delay module control circuit. The delay genera- 
l tor  m a y  be controlled by an applied voltage, 150 V corresponding to zero 

delay and 50 V to full scale delay, 

Set Full Scale control is adjusted to produce 150 V output, and with the sig- 

nal at 12 V, the Gain Adjust control can be set  to produce any desired maxi- 

W i t h  the delay control signal at 0 V, the 

I 
I mum delay in  the operating range. The Gain Adjust controls thus allow 
I 

I 
1 

~ 

the setting of the delay modules in a sequence of ratios while the delay con- 

trol  signal provides for ganged control of all four modules simultaneously, 

thus setting the time scale appropriate for any particular charge-to-mass 

ratio being accelerated, 

proportional to the square root of the charge-to-mass ratio) is monitored 

by a digital voltmeter (see Fig. 3), which is also used in  calibration of the 

delay module control circuits. The control signal can be derived from the 

power supply of Fig. 6 by means of a potentiometer and variable resistor 

combination (not shown), 

is sufficient for driving all of the delay module controls so that this compo- 

nent need not be replicated at each stage. 

The delay control signal setting (which is inversely 

It should be noted that one of these power supplies 

Tests of the electronics are chiefly a matter of calibration and veri- 

fication of component specifications and determination of system perform- 

ance by means of a high speed oscilloscope (pulse rise times, delay accu- 

racy, etc. ). Reliability can be assessed by observing system performance 

over a great number of acceleration cycles using the pulse simulator to 

provide triggering. 
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6 .  A U T O M T I C  CONTROL SYSTEM 
PRELIMINARY DESIGN 

A block diagram for  an automatic control system for the micro- 

particle accelerator is given i n  Fig. 7. This system produces a delay 

control signal output directly from the drive and test frequency signals 

of the ARC microparticle source, as well as giving direct indication of 

particle charge-to-mass ratio. 

A pair of independent 0-10 volt control signals regulates a pair 

of linear voltage-to-frequency converters ( V T F )  to provide source drive 

and test signals. The control signals are also multiplied in an analogue 

multiply module (M) and the result scaled by an amplifier (A) and meas- 

ured by a digital voltmeter (DVM). 

proportional to the product of the drive and test frequencies, the ampli- 

f ier gain can be adjusted so that the voltmeter indicates the charge-to- 

mass ratio (or perhaps, more conveniently, one tenth of this ratio)directly. 

The accuracy of the indication codd be a fraction of a percent, taking the 

control signals to be perfectly accurate. 

drive an analogue computer involving square root and divide modules 

(SR, D) to produce an output inversely proportional to the square root 

of the product of the signals, hence directly proportional to the accelera- 

tor time scale. If the output signal magnitude is appropriately adjusted, 

it could be used as the delay control signal. an 

accuracy in this signal of f 1% is tolerable. The computing circuit of 

Fig.  7 is not the simplest conceivable, but gives a mote accurate result 

which is just sufficient for the requirements. 

Since the charge-to-mass ratio is 

The control signals would a l s o  

A s  noted in Section 5 ,  

21 





V T F  

DVM 

A 

M 

SR 

D 

P 

Key to Figure 7 

- voltage-to-frequency converter; see Fige. 8 , 9  

- digital voltmeter 

- amplifier 

- analogue multiply module ’ e. g. , Consolidated 
, Electrdyn@cs(Devar 

KLnetics Div.) Model 

connections 
- analogue square root module 19-302 in appropriate 

- analogue divide module 4 

- analogue module power supplies; e .  g., 
Consolidated Electrodynamics models 
19-601 and 19-603 
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The voltage -to-frequency converters could be electronic o r  electro- 

mechanical. 

is achievable, 

is given in  Fig. 8 .  A servo motor (M) simultaneously drives an accurate 

oscillator (0), having a linear control characteristic, and a potentiometer 

in  one arm of a bridge circuit (B). The control signal drives another a rm 

of the bridge. Bridge imbalance is sensed by the amplifier (A) which con- 

trols a sensitive relay (R) which in turn controls the servo motor in such 

a way as to  eliminate the imbalance. In this way, the oscillator output f r e -  

quency can be made proportional to the control signal voltage. 

In either case, conversion accuracy of a fraction of a percent 

A block diagram illustrating the electromechanical approach 

In the electronic approach illustrated in Fig. 9, an electronic voltage- 

to-frequency converter {C) provides a square wave oGtput with a frequency 

proportional to the control signal voltage. 

are  attenuated in an R-C filter (F) and the filter output is passed to the am- 

plifier (A). 

its output amplitude remains reasonably constant even though the filter out- 

put drops as the frequency is increased. 

The harmonics of the output wave 

This is equipped with an automatic gain control circuit so that 

The electronic converter is less expensive that the servo controlled 

oscillator, but can never be as nearly free of harmonics. A decision between 

the two must be based on a clearer understanding of the ARC microparticle 

source requirements, and will therefore be deferred to a later time. 
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OUTPUT 

A 
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DELAY MOOUU CONTROL CIRCUIT 
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7. PROTOTYPE SYSTEM TEST 

The prototype system will be put through the acceleration cycle 

repeatedly, using the pulse simulator, to assess the reliability of opera- 

tion. Performance can be monitored by high speed oscilloscope and the 

built-in instruments. This test  should establish what recalibration and/ 

o r  servicing periods for the various components are consistent with the 

maintenance of high accelerator performance reliability and minimum 

down time. 

As soon as system performance is firmly established, a reappor- 

tionment of drift tube lengths will be made, in line with the comments in  

Section 5, and recalculation of the accelerator timing sequence will be 

undertaken, using the computer program previously devised. In this wayI 

an optimum distribution of safetymargin among the stages can be realized. 

No increase in acceleration path length is involved in this reapportionment. 
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